Multiple mechanisms of Na+ channel--linked long-QT syndrome

Circ Res. 1996 May;78(5):916-24. doi: 10.1161/01.res.78.5.916.

Abstract

Inheritable long-QT syndrome (LQTS) is a disease in which delayed ventricular repolarization leads to cardiac arrhythmias and the possibility of sudden death. In the chromosome 3-linked disease, one mutation of the cardiac Na+ channel gene results in a deletion of residues 1505 to 1507 (Delta KPQ), and two mutation result in substitutions (N1325S and R1644H). We compared all three mutant-channel phenotypes by heterologous expression in Xenopus oocytes. Each produced a late phase of inactivation-resistant, mexiletine- and tetrodotoxin-sensitive whole-cell currents, but the underlying mechanisms were different at the single-channel level. N1325S and R1644H showed dispersed reopenings after the initial transient, whereas Delta KPQ showed both dispersed reopenings and long-lasting bursts. Thus, two distinct biophysical defects underlie the in vitro phenotype of persistent current in Na+ channel-linked LQTS, and the additive effects of both are responsible for making the Delta KPQ phenotype the most severe.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Electric Conductivity
  • Ion Channel Gating / physiology
  • Long QT Syndrome / physiopathology*
  • Mutation / physiology
  • Oocytes
  • Phenotype
  • Sodium Channels / genetics
  • Sodium Channels / physiology*
  • Xenopus

Substances

  • Sodium Channels