The regulated interactions of leukocytes with vascular endothelial cells are crucial in controlling leukocyte traffic between blood and tissues. Vascular adhesion protein-1 (VAP-1) is a novel, human endothelial cell molecule that mediates tissue-selective lymphocyte binding. Two species (90 and 170 kD) of VAP-1 exist in lymphoid tissues. Glycosidase digestions revealed that the mature 170-kD form of VAP-1 expressed on the lumenal surfaces of vessels is a heavily sialylated glycoprotein. The sialic acids are indispensable for the function of VAP-1, since the desialylated form of VAP-1 no longer mediates lymphocyte binding. We also show that L-selectin is not required for binding of activated lymphocytes to VAP-1 under conditions of shear stress. The 90-kD form of VAP-1 was only seen in an organ culture model, and may represent a monomeric or proteolytic form of the larger species. These data indicate that L-selectin negative lymphocytes can bind to tonsillar venules via the VAP- 1-mediated pathway. Moreover, our findings extend the role of carbohydrate-mediated binding in lymphocyte-endothelial cell interactions beyond the known selectins. In conclusion, VAP-1 naturally exists as a 170-kD sialoglycoprotein that uses sialic acid residues to interact with its counter-receptors on lymphocytes under nonstatic conditions.