(+)-cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride (SM-12502) as a novel substrate for cytochrome P450 2A6 in human liver microsomes

J Pharmacol Exp Ther. 1996 May;277(2):768-74.

Abstract

(+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502) was oxidized by human liver microsomes to produce the S-oxide as a sole metabolite. Indirect evidence suggested that the S-oxidation was catalyzed by cytochrome P450 (CYP). Eadie-Hofstee plots showed biphasic pattern, suggesting that at least two enzymes were involved in the S-oxidation in human liver microsomes. Kinetic parameters of the S-oxidase with high-affinity showed Km and Vmax values of 20.9 +/- 4.4 microM and 0.111 +/- 0.051 nmol/min/mg microsomal protein, respectively. The S-oxidase activity was inhibited by coumarin and anti-CYP2A antibody. Among the contents of forms of CYP 20 samples of human liver microsomes, the content of CYP2A6 correlated with S-oxidase activity measured with 50 microM SM-12502 (r = .808, P < .0005). A close correlation (r = .908, P < .0001) was observed between activities of SM-12502 S-oxidase and coumarin 7-hydroxylase. Microsomes from genetically engineered human B-lymphoblastoid cells expressing CYP2A6 metabolized SM-12502 to the S-oxide efficiently. The results indicate that CYP2A6 isozyme is a major form of CYP responsible for the S-oxidation of SM-12502 in human liver microsomes. Thus, SM-12502 will be a useful tool in further research to analyze a human genetic polymorphism of CYP2A6.

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases*
  • Cytochrome P-450 CYP2A6
  • Cytochrome P-450 Enzyme System / physiology*
  • Humans
  • Isoenzymes / analysis
  • Microsomes, Liver / metabolism
  • Mixed Function Oxygenases / physiology*
  • Oxidation-Reduction
  • Rats
  • Thiazoles / metabolism*
  • Thiazolidines

Substances

  • Isoenzymes
  • Thiazoles
  • Thiazolidines
  • 3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • Aryl Hydrocarbon Hydroxylases
  • CYP2A6 protein, human
  • Cytochrome P-450 CYP2A6