We investigated the effects of hemodynamic force on fibrinolytic activity of cultured human umbilical vein endothelial cells stimulated by cytokines, using a modified cone-plate viscometer in which well-controlled and -defined shear forces were generated. Treatment of the cells with interleukin (IL)-beta or tumor necrosis factor alpha (TNFalpha) under static conditions had no effect on tissue plasminogen activator (t-PA) secretion, while release of plasminogen activator inhibitor 1 (PAI-1) increased. When cells were exposed to increasing shear stress up to 24 dynes/cm2, levels of t-PA and t-PA/PAI-1 complex significantly increased relative to shear stress, while total PAI-1 and active PAI-1 secretion decreased gradually. In the presence of IL-1beta or TNFalpha, the increase in production of t-PA and the t-PA/PAI-1 complex was further augmented. Dot blot hybridization analysis of cultured cells in similar experimental conditions using t-PA and PAI-1 cDNA probes revealed no t-PA mRNA in 3 microg total RNA from static endothelial cells under resting or cytokine-stimulated conditions, but abundant t-PA mRNA was detected in cells subjected to a shear force of 18 dynes/cm2, and the increase was further augmented by addition of cytokines. In contrast, PAI-1 mRNA was detected in resting and cytokine-stimulated, nonsheared endothelial cells, but levels decreased after exposure to shear stress, even in the presence of cytokines. These results indicate a role for hemodynamic forces in regulating fibrinolytic activity with or without cytokine stimulation.