The ion channel properties of human annexin V, a calcium- and phospholipid-binding protein of the annexin family, have been structurally and functionally investigated by analysing the mutant Glu112 -->Gly. Glu112 forms a salt bridge with Arg271 located in the interior of the hydrophilic pore of the molecule which is conserved within the annexin family. The crystal structures of the mutant and wild-type proteins are very similar and show only marginal conformational changes around the mutation site. Electron microscopic images show a conserved four-domain structure upon membrane binding as in the wild-type annexin V. The channel properties of the mutant are drastically changed, as the mutant has lost the voltage-dependent channel gating and the selectivity for calcium ions over monovalent cations. These results strongly support the hypothesis that the central, hydrophilic pore is the ion-conducting pathway.