Background: Retinal pigment epithelial (RPE) cells that enter the vitreous in pathologic conditions, such as retinal detachment, may proliferate and contribute to the formation of epiretinal membranes.
Objective: To study whether hyalocytes, endogenous vitreous cells, play a role in modulating the proliferation of RPE cells.
Methods: Cell proliferation was measured by tritiated thymidine incorporation in density-arrested human RPE cells after incubation with media that had been conditioned by cultured bovine hyalocytes. Preliminary characterization of inhibitory activity in hyalocyte-conditioned medium was performed, including blocking experiments with a neutralizing antibody to transforming growth factor-beta 2 (TGF-beta) and proliferation assays that used MV-1-Lu mink lung epithelial cells. Northern blots were done to asses hyalocyte expression of TGF-beta messenger RNA.
Results: Hyalocyte-conditioned medium inhibited tritiated thymidine incorporation in RPE cells and MV-1-Lu mink lung epithelial cells in the presence or absence of serum or protease inhibitors. A portion of the inhibitory activity was neutralized by an antibody directed against TGF-beta. Northern blots of hyalocyte RNA demonstrated the presence of messenger RNA for TGF-beta 2. These data suggest that TGF-beta is responsible for a portion of the inhibitory activity secreted by hyalocytes. Additional inhibitory activity is attributable to one or more low-molecular-weight molecules distinct from TGF-beta.
Conclusions: Hyalocyte-conditioned medium inhibits RPE cell proliferation in vitro through TGF-beta and at least one other molecule. Production of these factors by hyalocytes in vivo could provide a deterrent for epiretinal membrane formation that may be perturbed under pathologic conditions.