Several cDNA clones representing alternatively spliced Rev-specific transcripts were isolated from a cDNA library prepared from Himalayan tahr cells infected with caprine arthritis encephalitis virus (CAEV). We previously characterized two rev-like cDNA species, d1 and d2, and a tat e1 cDNA containing the rev coding sequence downstream to the tat. In these cDNAs, the rev coding domain derives its amino terminus from the N terminus of env, which is spliced to the 3' open reading frame encoding the putative Rev protein. In this study, we report the genetic structure of a fourth rev-like cDNA (designated g1), which lacks the 5' env-derived sequences. All of these rev transcripts, including cDNA g1, increased the level of chloramphenicol acetyltransferase expression when cotransfected with a reporter plasmid containing the CAEV Rev-response element-spanning region downstream of the cat coding sequences. Western blot (immunoblot) analysis showed that each transfected cDNA species gave rise to a 16-kDa protein lacking env-encoded amino-terminal epitopes. In contrast, CAEV-infected Himalayan tahr cells expressed only a 20-kDa protein, whose N terminus, in contrast, is derived from the env. Moreover, only the 20-kDa protein was also detected in the mature CAEV virions. These observations suggest that the transcripts d1, d2, and e1 can potentially, in appropriate cellular context, encode two Rev isoforms differing in their N termini, whereas the g1 transcript encodes only the 16-kDa species. Elucidation of the significance of the 16-kDa Rev protein in CAEV biology must await further studies.