Oxygen equilibrium properties of chromium (III)-iron (II) hybrid hemoglobins

J Biol Chem. 1996 May 24;271(21):12451-6. doi: 10.1074/jbc.271.21.12451.

Abstract

Cr(III)-Fe(II) hybrid hemoglobins, alpha 2(Cr) beta 2(Fe) and alpha 2(Fe) beta 2(Cr), in which hemes in either the alpha- or beta-subunits were substituted with chromium(III) protoporphyrin IX (Cr(III)(PPIX), were prepared and characterized by oxygen equilibrium measurements. Because Cr(III)PPIX binds neither oxygen molecules nor carbon monoxide, the oxygen equilibrium properties of Fe(II) subunits within these hybrids can be analyzed by a two-step oxygen equilibrium scheme. The oxygen equilibrium constants for both hybrids at the second oxygenation step agree with those for human adult hemoglobin at the last oxygenation step (at pH 6.5-8.4 with an without inositol hexaphosphate at 25 degrees C). The similarity between the effects of the Cr(III)PPIX and each subunits' oxygeme on the oxygen equilibrium properties of the counterpart Fe(II) subunits within hemoglobin indicate the utility of Cr(III)PPIX as a model for a permanently oxygenated heme within the hemoglobin molecule. We found that Cr(III)-Fe(II) hybrid hemoglobins have several advantages over cyanomet valency hybrid hemoglobins, which have been frequently used as a model system for partially oxygenated hemoglobins. In contrast to cyanomet heme, Cr(III)PPIX within hemoglobin is not subject to reduction with dithionite or enzymatic reduction systems. Therefore, we could obtain more accurate and reasonable oxygen equilibrium curves of Cr(III)-Fe(II) hybrids in the presence of an enzymatic reduction system, and we could obtain single crystals of deoxy-alpha 2(Cr) beta 2(Fe) when grown in low salt solution in the presence of polyethylene glycol 1000 and 50 mM dithionite.

MeSH terms

  • Adult
  • Chromium / chemistry*
  • Crystallization
  • Hemoglobins / chemistry*
  • Humans
  • Iron / chemistry*
  • Isoelectric Focusing
  • Oxygen / chemistry*
  • Spectrum Analysis

Substances

  • Hemoglobins
  • Chromium
  • Iron
  • Oxygen