The in vivo potency of euphorigenic doses of intravenous cocaine for displacing [123I]beta-CIT ([123I]2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane) binding to striatal dopamine transporters (DAT) was assessed in human cocaine addicts using single photon emission computed tomography (SPECT). Cocaine-dependent subjects (n = 6) were injected with [123I]beta-CIT and imaged 24 h later under equilibrium conditions. Sequential cocaine infusions (0.28 +/- 0.03 and 0.56 +/- 0.07 mg/kg) produced significant (P < 0.0005) reductions in the specific to non-specific equilibrium partition coefficient, V3" (6 +/- 6 and 17 +/- 3%), a measure proportional to DAT binding potential. Regression analysis of the logit transformed data enabled reliable determination of the Hill coefficient (0.51) and 50% displacement (ED50) dose of cocaine (2.8 mg/kg). These preliminary data suggest that cocaine produces behavioral effects in humans at measurable levels of DAT occupancy.