Changes in (markers of) bone metabolism during high dose corticosteroid pulse treatment in patients with rheumatoid arthritis

Ann Rheum Dis. 1996 May;55(5):288-93. doi: 10.1136/ard.55.5.288.

Abstract

Objective: To examine the effect of high dose corticosteroid pulse treatment (three times 200 mg dexamethasone intravenously in eight days) on calcium and bone metabolism in 17 consecutive patients with active rheumatoid arthritis (RA).

Methods: Bone formation was quantified by measurement of serum alkaline phosphatase, osteocalcin, and carboxyterminal propeptide of type I procollagen (pro-I-CPP) concentrations. Bone resorption was measured by urinary excretion of calcium, hydroxyproline, (free and total) deoxypyridinoline (Dpyr), (free and total) pyridinoline (Pyr), and serum concentrations of the carboxyterminal cross linked telopeptide of type I collagen (I-CTP). Disease activity of RA was measured by erythrocyte sedimentation rate, C reactive protein, and Ritchie and Thompson joint scores.

Results: Disease activity was initially high, and decreased during corticosteroid pulse treatment and the following five weeks. Osteocalcin, alkaline phosphatase, and pro-I-CPP concentrations were initially within normal limits, while I-CTP, Dpyr, and Pyr were increased. Osteocalcin and pro-I-CPP concentrations decreased (p < 0.01) during corticosteroid pulse treatment, but rapidly returned to baseline after the treatment. No changes were observed in alkaline phosphatase and urinary excretion of calcium and hydroxyproline. Bone resorption measured by serum I-CTP and urinary excretion of Pyr and Dpyr was unchanged or decreased (p < 0.05-0.01), depending on the time of measurement and the parameter measured.

Conclusions: In these patients with active RA, bone resorption was increased, while bone formation was within normal limits. During high dose corticosteroid pulse treatment, bone formation was only transiently decreased, while markers of bone resorption were unchanged or decreased. Because corticosteroid pulse treatment has only a short term negative effect on bone formation, and because it probably reduces bone resorption, at least partly as a result of the decreased disease activity, the effect of corticosteroid pulse treatment on bone may be assumed to be relatively mild.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Disease
  • Adult
  • Aged
  • Alkaline Phosphatase / blood
  • Amino Acids / urine
  • Anti-Inflammatory Agents / administration & dosage
  • Anti-Inflammatory Agents / pharmacology*
  • Arthritis, Rheumatoid / drug therapy*
  • Arthritis, Rheumatoid / metabolism
  • Biomarkers / blood
  • Biomarkers / urine
  • Bone Resorption / drug therapy
  • Bone and Bones / drug effects*
  • Bone and Bones / metabolism
  • Calcium / metabolism*
  • Calcium / urine
  • Collagen / blood
  • Collagen Type I
  • Dexamethasone / administration & dosage
  • Dexamethasone / pharmacology*
  • Drug Administration Schedule
  • Female
  • Humans
  • Hydroxyproline / urine
  • Male
  • Middle Aged
  • Osteocalcin / blood
  • Osteogenesis / drug effects
  • Peptide Fragments / blood
  • Peptides / blood
  • Procollagen / blood

Substances

  • Amino Acids
  • Anti-Inflammatory Agents
  • Biomarkers
  • Collagen Type I
  • Peptide Fragments
  • Peptides
  • Procollagen
  • collagen type I trimeric cross-linked peptide
  • procollagen type I carboxy terminal peptide
  • Osteocalcin
  • pyridinoline
  • Dexamethasone
  • deoxypyridinoline
  • Collagen
  • Alkaline Phosphatase
  • Hydroxyproline
  • Calcium