Vasoactive intestinal peptide (VIP)1 receptors in rats and humans recognize peptide histidine isoleucineamide (PHI) with high and low affinity, respectively. We took advantage of this phenotypic difference to identify the domain responsible for the selective recognition of PHI by rat and human receptors which display >80% sequence identity. After transfection of human and rat receptors in COS cells, the ratio of IC50 for PHI/IC50 for VIP (referred to as P/V) in inhibiting 125I-VIP binding was shown to be >1,000 and <40, respectively. Construction of eight rat/human receptor chimerae by overlap polymerase chain reaction and determination of their P/V ratios demonstrated that the critical domain for PHI recognition is present within a sequence comprising part of the first extracellular loop and third transmembrane domain. This domain contains three different amino acids numbered according to human and rat sequences, respectively, e.g. Gln207 (human) versus His208 (rat), Gly211 versus Ala212 and Met219 versus Val220. Site-directed mutagenesis introducing individual, double, or triple mutations in a chimeric construct revealed that all three amino acids were involved in the recognition of PHI. Triple mutations were then introduced in the wild-type receptors i.e. Q207H, G211A, M219V human VIP1 receptor and H208Q, A212G, V220M rat VIP1 receptor, resulting in a complete change in their phenotype from human to rat and from rat to human, respectively. The results demonstrate that three nonadjacent amino acids are responsible for the selective recognition of PHI by human and rat VIP1 receptors.