The effects of group 2- versus group 3-selective metabotropic glutamate (mGlu) receptor agonists were examined against forskolin (10 microM)-, vasoactive intestinal peptide (VIP; 1 microM)- and 5'-N-ethylcarboxamidoadenosine (NECA; 10 microM)-stimulated cAMP accumulations in adult rat hippocampal slices (in the presence of adenosine deaminase). Group 2 mGlu receptor-selective ((1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid (1S,3R-ACPD) and (2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine (L-CCG I)) and group 3 mGlu receptor-selective (L-2-amino-4-phosphonobutyric acid (L-AP4) and L-serine-O-phosphate) agonists greatly inhibited forskolin-stimulated cAMP formation ( > 80% at maximally effective concentrations). In contrast, stimulation of cAMP by VIP or NECA was inhibited by group 3, but not by group 2, mGlu receptor agonists. In fact, group 2 mGlu receptor agonists greatly potentiated cAMP accumulation evoked by NECA. Both the inhibitory effects of 1S,3R-ACPD on forskolin-stimulated cAMP and the potentiating effects on NECA-stimulated cAMP accumulation were reversed by the competitive group 1/2 mGlu receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG). However, (+)-MCPG had no effects on L-AP4 inhibition of cAMP. Thus, the effects of group 2 versus group 3 mGlu receptor agonists on cAMP coupling can be pharmacologically as well as functionally differentiated in the rat hippocampus.