Altered expression or function of the p16CDKN2 tumor suppressor gene on chromosome 9p21 occurs in a wide range of human tumors, and mutations in the gene have been shown to segregate with familial predisposition to malignant melanoma. We have used a variety of assays to examine the functional properties of tumor-associated alleles, including eight premature termination mutants, eight missense mutants, and three isoforms of p16 initiated at different amino-terminal methionine codons. The amino- and carboxy-terminal domains of the protein, outside the ankyrin-like repeats, appeared to be dispensable, but the majority of the premature termination mutations led to loss of function. Of the missense mutations tested, four displayed clear loss of function whereas two behaved like the wild type under all conditions tested. The remaining two mutations, a G-to-W mutation at position 101 (Gl01W) and V126D, both of which are associated with familial melanoma, were found to be temperature sensitive for binding to Cdk4 and Cdk6 in vitro, for inhibiting cyclin D1-Cdk4 in a reconstituted pRb-kinase assay, and for increasing the proportion of G1-phase cells following transfection. These findings clarify previous disparities and argue strongly that p16CDKN2 is a bona fide tumor suppressor associated with familial melanoma.