p53-independent apoptosis during mammary tumor progression in C3(1)/SV40 large T antigen transgenic mice: suppression of apoptosis during the transition from preneoplasia to carcinoma

Cancer Res. 1996 Jul 1;56(13):2998-3003.

Abstract

Alterations in apoptosis and associated mechanisms during mammary tumor progression were investigated in transgenic mice expressing the SV40 large T antigen (T(AG)) driven by the rat prostatic steroid-binding protein C3(1) 5'-flanking region. Apoptosis levels, assessed by in situ end labeling, were low in normal mammary epithelial cells, highest in atypical hyperplasias (preneoplastic lesions), and less pronounced in adenocarcinomas. Preneoplastic cells maintain the ability to undergo apoptosis as a mechanism of tumor growth suppression, but this critical control of apoptosis is lost as these lesions progress to carcinomas. These alterations in apoptosis occur during mammary tumor progression in mice containing wild-type p53+/+ genotype as well as in mice with the p53-/- genotype. Thus, apoptosis in this tumor model occurs through a p53-independent mechanism. Because other studies have demonstrated p53-dependent apoptosis in T(AG)-induced choroid plexus tumors of transgenic mice, we propose that the role of p53 in apoptosis may be tissue-specific. In addition, bcl-2 protein was not expressed in any mammary lesions. SV40 T(AG) expression, which correlated with the nuclear p53 protein at all stages of tumor progression, was low in normal mammary epithelial cells, moderately high in atypical hyperplasias, and strongly expressed in adenocarcinomas. No p53 mutations were found at any stage of mammary adenocarcinoma development, suggesting that tumor progression does not require a dominantly acting p53 mutation in this transgenic model. p2l(Waf1/Cip1), a cyclin-dependent kinase inhibitor, was expressed in normal mammary tissue but was not detected in the mammary carcinomas, despite high nuclear accumulation of wild-type p53 protein, suggesting functional loss of p53 due to binding of SV40 T(AG), to p53. These findings suggest that suppression of apoptosis during the transition from atypical hyperplasia to adenocarcinoma appears to be a critical event for mammary cancer development in C3(1)/T(AG) transgenic mice and occurs by p53- and bcl-2-independent pathways.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Androgen-Binding Protein / biosynthesis
  • Androgen-Binding Protein / genetics
  • Androgen-Binding Protein / physiology*
  • Animals
  • Antigens, Polyomavirus Transforming / biosynthesis
  • Antigens, Polyomavirus Transforming / genetics
  • Antigens, Polyomavirus Transforming / physiology*
  • Apoptosis / physiology*
  • Base Sequence
  • Blotting, Western
  • Cell Cycle
  • Cell Division / physiology
  • Cell Transformation, Neoplastic / pathology*
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins / biosynthesis
  • Disease Progression
  • Female
  • Genes, p53
  • Genotype
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology*
  • Mice
  • Mice, Transgenic
  • Molecular Sequence Data
  • Mutation
  • Polymerase Chain Reaction
  • Polymorphism, Single-Stranded Conformational
  • Precancerous Conditions / metabolism
  • Precancerous Conditions / pathology*
  • Proliferating Cell Nuclear Antigen
  • Prostatein
  • Proto-Oncogene Proteins / biosynthesis
  • Proto-Oncogene Proteins c-bcl-2
  • Rats
  • Secretoglobins
  • Tumor Suppressor Protein p53 / biosynthesis
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / physiology*
  • Uteroglobin

Substances

  • Androgen-Binding Protein
  • Antigens, Polyomavirus Transforming
  • Cdkn1a protein, mouse
  • Cdkn1a protein, rat
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins
  • Proliferating Cell Nuclear Antigen
  • Prostatein
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • Scgb1d2 protein, rat
  • Scgb1d4 protein, rat
  • Scgb2a2 protein, rat
  • Secretoglobins
  • Tumor Suppressor Protein p53
  • Uteroglobin