Herpes simplex virus type I (HSV-1) glycoprotein gC binds complement component C3b, and purified gC inhibits complement activation. Two HSV strains carrying mutations in the gC gene which rendered them unable to bind C3b were compared with wild-type and marker-rescued viruses to evaluate the role of gC on the virion in protecting HSV-1 from complement-mediated neutralization. The gC mutant viruses were markedly susceptible to neutralization by nonimmune human serum, showing up to a 5,000-fold decline in titer after 1 h of incubation with serum. In contrast, wild-type or marker-rescued viruses showed a twofold reduction in titer. Studies with hypogammaglobulinemic and immunoglobulin G-depleted serum supported the observation that neutralization occurred in the absence of antibody. Neutralization of gC mutant strains by nonimmune serum was rapid; their half-life was 2 to 2.5 min, compared with 1 h for wild-type virus. Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated human serum or C4-deficient guinea pig serum failed to neutralize gC mutant strains, indicating a role for components of the classical complement pathway. gC had little additional effect on neutralization by the combination of antibody plus complement compared with complement alone. The results indicate that the magnitude of the protection offered by gC-1 is larger than previously recognized; that in the absence of gC-1, complement neutralization is rapid and is mediated by components of the classical complement pathway; and that gC mainly protects against antibody-independent complement neutralization, suggesting a probable role for gC early in infection, before antibodies develop.