Autophosphorylation at tyrosine is a common process in eukaryotic kinases, which is generally modulated by regulatory ligands and affects the properties of these enzymes. We report that this type of modification occurs also in bacteria, namely in an 81 kDa protein from Acinetobacter johnsonii. This protein is phosphorylated at the expense of ATP exclusively at tyrosine residues. It is located in the inner-membrane fraction of cells and can be totally solubilized by detergents. It has been purified to homogeneity by antiphosphotyrosine immunochromatography. Analysis of the peptides released under trypsin proteolysis of the protein has shown that it autophosphorylates at several tyrosine residues. The discovery of protein autophosphorylation in bacteria seems of special interest for studying the regulatory aspects of this modification when considering the relative simplicity of the bacterial systems, as compared with most eukaryotic systems, namely in terms of physiology and genetics.