The benchmark dose (BMD)4 approach is emerging as replacement to determination of the No Observed Adverse Effect Level (NOAEL) in noncancer risk assessment. This possibility raises the issue as to whether current study designs for endpoints such as developmental toxicity, optimized for detecting pair wise comparisons, could be improved for the purpose of calculating BMDs. In this paper, we examine various aspects of study design (number of dose groups, dose spacing, dose placement, and sample size per dose group) on BMDs for two endpoints of developmental toxicity (the incidence of abnormalities and of reduced fetal weight). Design performance was judged by the mean-squared error (reflective of the variance and bias) of the maximum likelihood estimate (MLE) from the log-logistic model of the 5% added risk level (the likely target risk for a benchmark calculation), as well as by the length of its 95% confidence interval (the lower value of which is the (BMD). We found that of the designs evaluated, the best results were obtained when two dose levels had response rates above the background level, one of which was near the ED05, were present. This situation is more likely to occur with more, rather than fewer dose levels per experiment. In this instance, there was virtually no advantage in increasing the sample size from 10 to 20 litters per dose group. If neither of the two dose groups with response rates above the background level was near the ED05, satisfactory results were also obtained, but the BMDs tended to be more conservative (i.e., lower). If only one dose level with a response rate above the background level was present, and it was near the ED05, reasonable results for the MLE and BMD were obtained, but here we observed benefits of larger dose group sizes. The poorest results were obtained when only a single group with an elevated response rate was present, and the response rate was much greater than the ED05. The results indicate that while the benchmark dose approach is readily applicable to the standard study designs and generally observed dose-responses in developmental assays, some minor design modifications would increase the accuracy and precision of the BMD.