From a targeted screening effort and medicinal chemistry program, L-368,899 was selected as the first orally-active oxytocin (OT) antagonist to enter clinical trials. In animal studies, L-368,899 was shown to be a potent and selective OT antagonist and was orally bioavailable in rats, dogs and chimpanzees. L-368,899 was further shown to be a potent OT antagonist in pregnant rhesus and to inhibit spontaneous nocturnal uterine contractions. In Phase I human studies, L-368,899 was generally well-tolerated given intravenously and showed significant plasma levels after oral administration. In addition, L-368,899 blocked OT-stimulated uterine activity in postpartum women with a potency similar to that in the pregnant rhesus monkey. More recently, another structural series has been pursued, represented by L-371,257 [1-(1-(4-(N-acetyl-4-piperidinyloxy)-2-methoxybenzoyl)pip eridin-4-yl)- 1,2-dihydro-4(H)-3,1-benzoxazin-2-one]. L-371,257 exhibits high affinity (Ki, 4.6 nM) for human uterine OT receptors with high selectivity vs. human vasopressin receptors. In rat tissues in vitro, L-371,257 is a potent and competitive OT antagonist (pA2, 8.4) and, in vivo, blocks OT-stimulated uterine activity given both i.v. and intraduodenally. L-371,257 highlights the promise of this novel structural class.