Earlier work from this laboratory has determined that glucose plays an important role in the mechanisms regulating meiotic maturation in mammalian oocytes. In the current study, we have further explored the role of glucose in hormone-induced germinal vesicle breakdown (GVB) in an effort to better understand how glucose utilization and metabolism relate to the control of meiotic maturation in mouse cumulus cell-enclosed oocytes (CEO). When CEO were cultured in medium containing 4 mM hypoxanthine (to maintain meiotic arrest), 5.5 mM glucose, and 0.23 mM pyruvate, follicle-stimulating hormone (FSH) stimulated lactate accumulation in a time-dependent manner. Addition of 2-deoxyglucose (2-DG) to the medium at various times after the initiation of culture resulted in rapid termination of lactate production and suppression of FSH-induced GVB scored after 18 hr of culture, the effectiveness diminishing the longer the delay before addition of 2-DG. By 8 hr, addition of 2-DG was without effect on GVB. Similar effects were seen when FSH-treated CEO were washed free of glucose. In a 2-DG dose-response experiment, gonadotropin-induced lactate production was prevented, but this inhibition did not necessarily prevent GVB. The activities of six metabolic enzymes were measured in extracts of freshly isolated complexes, and in order of increasing activity were: hexokinase, 6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, phosphofructokinase, lactate dehydrogenase, and pyruvate kinase. Of the six enzymes examined, only hexokinase activity was increased in CEO exposed to FSH. CEO were cultured in microdrops in the presence or absence of FSH, and aliquots from the same microdrop were assayed for glucose, lactate, and pyruvate. In response to FSH, utilization of glucose in microdrop cultures by CEO was markedly increased and was accompanied by comparable lactate production and limited pyruvate production. Cycloheximide and alpha-amanitin both blocked FSH-induced oocyte maturation, but only cycloheximide prevented the increase in hexokinase activity and glucose consumption. These data suggest that hexokinase is an important rate-limiting enzyme for glucose utilization that is under translational control and participates in the mechanisms controlling the reinitiation of meiosis. However, stimulation of glycolytic activity does not appear to be a necessary concomitant for meiotic induction.