The oxidative inactivation of rabbit skeletal muscle Ca(2+)-ATPase in sarcoplasmic reticulum (SR) vesicles by peroxynitrite (ONOO-) was investigated. The exposure of SR vesicles (10 mg/ml protein) to low peroxynitrite concentrations ( < or = 0.2 mM) resulted in a decrease of Ca(2+)-ATPase activity primarily through oxidation of sulfhydryl groups. Most of this deactivation (ca.70%) could be chemically reversed by subsequent reduction of the enzyme with either dithiothreitol (DTT) or sodium borohydride (NaBH4), indicating that free cysteine groups were oxidized to disulfides. The initial presence of 5 mM glutathione failed to protect the SR Ca(2+)-ATPase activity. However, as long as peroxynitrite concentrations were kept < or = 0.45 mM, the efficacy of DTT to reverse Ca(2+)-ATPase inactivation was enhanced for reaction mixtures which initially contained 5 mM glutathione. At least part of the disulfides were formed intermolecularly since gel electrophoresis revealed protein aggregation which could be reduced under reducing conditions. The application of higher peroxynitrite concentrations ( > or = 0.45 mM) resulted in Ca(2+)-ATPase inactivation which could not be restored by exposure of the modified protein to reducing agents. On the other hand, treatment of modified protein with NaBH4 recovered all SR protein thiols. This result indicates that possibly the oxidation of other amino acids contributes to enzyme inactivation, corroborated by amino acid analysis which revealed some additional targets for peroxynitrite or peroxynitrite-induced processes such as Met, Lys, Phe, Thr, Ser, Leu and Tyr. Tyr oxidation was confirmed by a significant lower sensitivity of oxidized SR proteins to the Lowry assay. However, neither bityrosine nor nitrotyrosine were formed in significant yields, as monitored by fluorescence spectroscopy and immunodetection, respectively. The Ca(2+)-ATPase of SR is involved in cellular Ca(2+)-homeostasis. Thus, peroxynitrite mediated oxidation of the Ca(2+)-ATPase might significantly contribute to the loss of Ca(2+)-homeostasis observed under biological conditions of oxidative stress.