Since Smith's time, the essential role of collecting duct intercalated cells in controlling net acid excretion has been recognized. Rather than employing an H(+)-exchange mechanism, intercalated cells have V-ATPase on the plasma membrane and in plasmalemma-associated tubulovesicles, which functions in the bicarbonate reabsorption, regeneration, and bicarbonate secretion required for acid-base homeostasis. Several distinct mechanisms participate in regulating V-ATPase-driven H+ secretion in different cell types: (1) Renal epithelial cells have the capacity to express different structural forms of V-ATPase that have intrinsic differences in their enzymatic properties. 2) The kidney produces cytosolic regulatory proteins, capable of interacting directly with the V-ATPase, that may modify its activity. V-ATPases in different cell types may differ in the degree to which their activity is affected by regulatory factors, as a result of variations in V-ATPase structure. (3) In the alpha intercalated cell, the number of active V-ATPases on the luminal membrane is controlled in vivo by membrane vesicle-mediated traffic that may require unidentified mediators. In the beta intercalated cell, the number of active V-ATPases on the basolateral membrane may be controlled by regulated assembly and disassembly, responding directly to extracellular pH.