Cellular mechanisms for bi-directional regulation of tubular sodium reabsorption

Kidney Int. 1996 Jun;49(6):1743-7. doi: 10.1038/ki.1996.259.

Abstract

The molecular mechanisms underlying the regulation of sodium excretion are incompletely known. Here we propose a general model for a bi-directional control of tubular sodium transporters by natriuretic and antinatriuretic factors. The model is based on experimental data from studies on the regulation of the activity of Na+,K+-ATPase, the enzyme that provides the electrochemical gradient necessary for tubular reabsorption of electrolytes and solutes in all tubular segments. Regulation is carried out to a large extent by autocrine and paracrine factors. Of particular interest are the two catecholamines, dopamine and norepinephrine. Dopamine is produced in proximal tubular cells and inhibits Na+,K+-ATPase activity in several tubule segments. Renal dopamine availability is regulated by the degrading enzyme, catechol-O-methyl transferase. Renal sympathetic nerve endings contain norepinephrine and neuropeptide Y (NPY). Activation of alpha-adrenergic receptors increase and activation of beta-adrenergic receptors decrease Na+,K+-ATPase activity. alpha-Adrenergic stimulation increases the Na+ affinity of the enzyme and thereby the driving force for transcellular Na+ transport. NPY acts as a master hormone by synergizing the alpha- and antagonizing the beta-adrenergic effects. Dopamine and norepinephrine control Na+,K+-ATPase activity by exerting opposing forces on a common intracellular signaling system of second messengers, protein kinases and protein phosphatases, ultimately determining the phosphorylation state of Na+,K+-ATPase and thereby its activity. Important crossroads in this network are localized and functionally defined. Phosphorylation sites for protein kinase A and C have been identified and their functional significance has been verified.

Publication types

  • Review

MeSH terms

  • Animals
  • Biological Transport / physiology
  • Humans
  • Kidney Tubules / cytology*
  • Kidney Tubules / metabolism*
  • Sodium / metabolism*

Substances

  • Sodium