Transmission of a plaque-purified SAT-2 foot-and-mouth disease virus (FMDV) occurred erratically from artificially infected African buffaloes in captivity to susceptible buffaloes and cattle in the same enclosure; in some instances transmission occurred only after contact between persistently infected carriers and susceptible animals lasting a number of months. Because the rate at which FMDV mutations accumulated in persistently infected buffaloes was approximately linear (1.64 percent nucleotide substitutions per year over the region of the 1D gene sequenced), both buffaloes and cattle that became infected some months after the start of the experiment were infected with viruses that differed from the original clone. The nucleotide differences were reflected in significant antigenic change. A SAT-1 FMDV from a separate experiment inadvertently infected some of the buffalo in the SAT-2 experiment. The SAT-1 FMDV also accumulated mutations at a constant rate in individual buffaloes (1.54 percent nucleotide changes per year) but the resultant antigenic variation was less than for SAT-2. It is concluded that persistently infected buffaloes in the wild constantly generate variants of SAT-1 and SAT-2 which explains the wide range of genomic and antigenic variants which occur in SAT-1 and SAT-2 viruses in southern Africa.