The two pathological lesions found in the brains of Alzheimer's disease patients, neurofibrillary tangles and neuritic plaques, are likely to be formed through a common pathway. Neurofibrillary tangles are intracellular aggregates of paired helical filaments, the main component of which is hyperphosphorylated forms of the microtubule-associated protein tau. Extracellular neuritic plaques and diffuse and vascular amyloid deposits are aggregates of beta-amyloid protein, a 4-kDa protein derived from the amyloid precursor protein (APP). Using conditions in vitro under which two proline-directed protein kinases, glycogen synthase kinase-3beta (GSK-3beta) and mitogen-activated protein kinase (MAPK), were able to hyperphosphorylate tau, GSK-3beta but not MAPK phosphorylated recombinant APPcyt. The sole site of phosphorylation in APPcyt by GSK-3beta was determined by phosphoamino acid analysis and phosphorylation of APPcyt mutant peptides to be Thr743 (numbering as for APP770). This site was confirmed by endoproteinase Glu-C digestion of APPcyt and peptide sequencing. The ability of GSK-3beta to phosphorylate APPcyt and tau provides a putative link between the two lesions and indicates a critical role of GSK-3beta in the pathogenesis of Alzheimer's disease.