Dynamic interactions between host and pathogen are characteristic of infections caused by intracellular bacteria. This has favoured the evolution of highly effective control systems by which these pathogens regulate the expression of different virulence factors during sequential steps of the infection process. In the case of the facultative intracellular bacterium Listeria monocytogenes, these steps involve internalization by eukaryotic cells, lysis of the resulting phagosome, replication as well as movement within the host cytoplasm, direct cell-to-cell spread, and subsequent lysis of a double-membrane vacuole when entering neighbouring cells. Virulence factors which are involved in each of these steps have been identified and the expression of these factors is subject to a co-ordinate and differential control exerted by the major listerial virulence regulator PrfA. This protein belongs to the Crp/Fnr-family of transcriptional activators and recognizes specific target sequences in promoter regions of several listerial virulence genes. Differential expression of these genes during sequential steps of the infection seems to be at least partially mediated by different binding affinities of PrfA to its target sequences. Activity of PrfA-dependent genes and of prfA itself is under the control of several environmental variables which are used by the pathogen to recognize its transition from the free environment into a eukaryotic host.