Elevated heart rate variability in physically active postmenopausal women: a cardioprotective effect?

Am J Physiol. 1996 Aug;271(2 Pt 2):H455-60. doi: 10.1152/ajpheart.1996.271.2.H455.

Abstract

Coronary heart disease (CHD) and cardiac sudden death (CSD) incidence accelerates after menopause, but the incidence is lower in physically active versus less active women. Low heart rate variability (HRV) is a risk factor for CHD and CSD. The purpose of the present investigation was to test the hypothesis that HRV at rest is greater in physically active compared with less active postmenopausal women. If true, we further hypothesized that the greater HRV in the physically active women would be closely associated with an elevated spontaneous cardiac baroreflex sensitivity (SBRS). HRV (both time and frequency domain measures) and SBRS (sequence method) were measured during 5-min periods of controlled frequency breathing (15 breaths/min) in the supine, sitting, and standing postures in 9 physically active postmenopausal women (age = 53 +/- 1 yr) and 11 age-matched controls (age = 56 +/- 2 yr). Body weight, body mass index, and body fat percentage were lower (P < 0.01) and maximal oxygen uptake was higher (P < 0.01) in the physically active group. The standard deviation of the R-R intervals (time domain measure) was higher in all postures in the active women (P < 0.05) as were the high-frequency, low-frequency, and total power of HRV. SBRS also was higher (P < 0.05) in the physically active women in all postures and accounted for approximately 70% of the variance in the high-frequency power of HRV (P < 0.05). The results of the present investigation indicate that physically active postmenopausal women demonstrate higher levels of HRV compared with age-matched, less active women. Furthermore, SBRS accounted for the majority of the variance in the high-frequency power of HRV, suggesting the possibility of a mechanistic link with cardiac vagal modulation of heart rate. Our findings may provide insight into a possible cardioprotective mechanism in physically active postmenopausal women.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Baroreflex / physiology
  • Female
  • Heart / physiology*
  • Heart Conduction System / physiology
  • Heart Rate*
  • Humans
  • Middle Aged
  • Physical Fitness*
  • Postmenopause / physiology*
  • Posture
  • Running
  • Supine Position