Since the attainment of higher bone mineral density (BMD) is a crucial strategy in preventing age-related bone loss and consequent fracture, we determined when bone mass of the lumbar spine (L2-L4) (g/cm2) and femoral neck (g/cm2) reaches its peak in healthy Japanese subjects and examined the influence of early exposure to estrogen and estrogen deficiency on BMD. We also determined the volumetric BMD, termed bone mineral apparent density (BMAD), of the lumbar spine and femoral neck. Using dual-energy x-ray absorptiometry (DXA) (Hologic QDR-1000), we measured BMD of both the lumbar spine and the femoral neck in 31 healthy children aged 2-11 yr, 269 children (138 males and 131 females) aged 13-19 yr, 12 men and 12 women aged 20-34 yr as adult controls, 11 patients with female central sexual precocity, and 3 patients with female primary hypogonadism. Because the densitometric data obtained from DXA are strongly influenced by the size of the bone in growing subjects, the volumetric BMAD (g/cm3) of the vertebral cube (L2-L4) and femoral neck were determined: BMAD (g/cm3) = BMD (g/cm2)/square root of scanned area (cm2) for the lumbar spine and by BMAD = BMD/width for the femoral neck. The BMD, both lumbar spine and femoral neck, nearly reached its peak at age 14.5-15 yr in girls and 16.5-17 yr in boys when compared with adult normal values. The difference in this age between sexes is identical to the difference in age at sexual maturation. BMD in patients with sexual precocity was high compared to age-matched controls, whereas patients with primary hypogonadism showed lower lumbar apparent BMD, and the increase in lumbar BMAD (g/cm3) was noted after the progression of puberty in healthy children, probably suggesting the importance of sex steroids in the increase of BMD and lumbar BMAD in both sexes. The girls with earlier menarche showed higher lumbar BMD at age 18 and 19 yr. For the femoral BMAD, there was no significant relationship between this value and age in girls. We conclude that peak bone mass is mainly achieved by late adolescence in Japanese as in Caucasians and that pubertal progression and probably estrogen itself play a crucial role in accumulation of bone mass in females.