Adverse central nervous system effects of older antihistamines in children

Pediatr Allergy Immunol. 1996 Feb;7(1):22-7. doi: 10.1111/j.1399-3038.1996.tb00101.x.

Abstract

Although older, potentially sedating, "first-generation" antihistamines (H1-receptor antagonists) are commonly used in childhood, their central nervous system (CNS) effects have not been well-documented in young subjects. We hypothesized that diphenhydramine and hydroxyzine would affect CNS function adversely in this population. Our objective was to evaluate the effects of these medications on central and peripheral histamine H1-receptors in children. Fifteen subjects with allergic rhinitis were tested before and 2-2.5 h after administration of diphenhydramine, hydroxyzine, or placebo in a double-blind, single-dose, three-way crossover study. Impairment of cognitive processing was assessed objectively by the latency of the P300 event-related potential (P300). Somnolence was assessed subjectively by a visual analog scale. Peripheral H1-blockade was assessed by suppression of the histamine-induced wheals and flares. At the central (Cz) and frontal (Fz) electrodes, diphenhydramine and hydroxyzine increased the P300 latency significantly (P < 0.05) compared to baseline. Hydroxyzine increased somnolence, as recorded on the visual analog scale, significantly compared to baseline (P < 0.05), with a similar trend for diphenhydramine (P = 0.07). Both antihistamines reduced histamine-induced wheals and flares significantly compared to baseline and compared to placebo. In children, diphenhydramine and hydroxyzine are effective H1-receptor antagonists, but both these medications cause CNS dysfunction, as evidenced by increased P300 latency, a measure of cognitive function, and by increased subjective somnolence.

Publication types

  • Clinical Trial
  • Comparative Study
  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • Cross-Over Studies
  • Diphenhydramine / adverse effects*
  • Diphenhydramine / blood
  • Double-Blind Method
  • Event-Related Potentials, P300 / drug effects*
  • Fatigue / chemically induced
  • Female
  • Histamine / pharmacology
  • Histamine H1 Antagonists / adverse effects*
  • Histamine H1 Antagonists / blood
  • Humans
  • Hydroxyzine / adverse effects*
  • Hydroxyzine / blood
  • Male
  • Rhinitis / drug therapy
  • Skin / drug effects
  • Skin Tests

Substances

  • Histamine H1 Antagonists
  • Hydroxyzine
  • Histamine
  • Diphenhydramine