The sisomicin-gentamicin resistance methylase gene (sgm) from Micromonospora zionensis (the producer of antibiotic G-52 [6-N-methyl-sisomicin]) encodes an enzyme that modifies 16S rRNA and thereby confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides. Here, we report that this gene is regulated on the translational level. The Escherichia coli lacZ gene and operon fusion system was used, and it was shown that an extra copy of the sgm gene decreases the activity of the fusion protein. These results suggested that expression of the sgm gene is regulated by the translational autorepression because of binding of the methylase to its own mRNA. It was shown by computer analysis that the same hexanucleotide (CCGCCC) is present 14 bp before the ribosome-binding site and in the C-1400 region of 16S rRNA, i.e., the region in which most of the aminoglycosides act. A deletion that removes the hexanucleotide before the gene fusion is not prone to negative autoregulation. This mode of regulation of the sgm gene ensures that enough methylase molecules protect the cell from the action of its own antibiotic. On the other hand, if all of the ribosomes are modified, Sgm methylase binds to its own mRNA in an autorepressive manner.