HIV-1 infected chimpanzees are relatively resistant to the development of AIDS despite their close genetic relatedness to humans and their susceptibility to HIV-1 infection. We have systematically studied possible reasons for their relative ability to maintain T helper (Th) cell numbers and immune competence in the presence of chronic HIV-1 infection. Factors which may alone or together cause the loss in T-cell dependent immunity include: (i) the loss of Th cell function; (ii) the loss of Th cells; and (iii) the loss of capacity for Th cell renewal. Differences in the in vivo and in vitro responses of T lymphocytes from chimpanzees and humans were compared for evidence of HIV-1 related T-cell dysfunction. In contrast to HIV infected individuals, HIV-1 infected chimpanzees maintained strong Th cell proliferative and cytokine responses after receiving tetanus toxoid boosts. In addition there was no abnormal Th1 to Th2 shift as is suggested to occur in AIDS patients. There was no evidence of Th cell dysfunction such as increased level of programmed cell death (PCD) or immune activation in HIV-1 infected chimpanzees in contrast to HIV-1 infected asymptomatic humans. Anergy could be induced with HIV-1 gp120 in human but not chimpanzee Th lymphocytes. We then asked if there was a direct loss of chimpanzee CD4+ cells due to HIV-1 infection in vitro. Infection of chimpanzee CD4+ lymphocyte cultures with HIV-1 in the absence of CD8+ cells resulted in marked cytopathic effect with complete lysis and loss of cells within 3 weeks. We concluded that most chronic HIV-1 infected chimpanzees were able to maintain relatively stable CD4+ lymphocyte numbers despite CD4+ lymphocyte destruction due to direct effects of the virus. Furthermore, there was no evidence of indirect Th cell loss, since neither increased levels of anergy nor apoptosis were observed. Lymph node biopsies from HIV-1 infected chimpanzees revealed that MHC class II rich regions of lymph nodes remained intact, in contrast to the involution of these regions in infected humans. This suggested that chimpanzees may maintain the capacity for Th cell renewal by preserving this MHC class II lymphoid environment. The data presented in this paper suggests that chimpanzees may preserve this critical MHC class II-Th cell environment by dramatically suppressing extra-cellular virus load and that this may be in part mediated by soluble lentivirus suppressing factors.