Local or systemic injection of peptidoglycan-polysaccharide polymers, which are the primary structural components of cell walls of nearly all bacteria, leads to acute inflammation, which can develop into chronic, spontaneously relapsing, granulomatous inflammation in a number of organs. Evolution into chronic granulomatous inflammation is dependent upon persistence of poorly biodegradable cell wall polymers within tissues, genetically determined host susceptibility, and generation of a T-lymphocyte-mediated immune response. Intraperitoneal injection of peptidoglycan-polysaccharide fragments from group A streptococci or selected intestinal bacteria into susceptible Lewis rats leads to chronic, spontaneously reactivating erosive arthritis and hepatic granulomas. Subserosal (intramural) injection of poorly biodegradable cell wall fragments into the distal intestine of Lewis rats induces chronic, spontaneously relapsing granulomatous enterocolitis with associated arthritis, hepatic granulomas, anemia, and leukocytosis. Chronic inflammation does not occur in T-lymphocyte-deficient rats and is prevented by cyclosporin-A therapy and degradation of peptidoglycan by the muralytic enzyme, mutanolysin. Moreover, resistant Buffalo and Fischer F344 rats, the latter sharing identical MHC antigens with Lewis rats, develop only acute inflammation with no chronic granulomatous response. Peptidoglycan-polysaccharide polymers activate almost every limb of the inflammatory response. Blockade of specific pathways suggests that interleukin-1, transforming growth factor-beta, plasma kallikrein, and T lymphocytes are dominant mediators of peptidoglycan-polysaccharide-induced arthritis, hepatic granulomas, and enterocolitis. Because of the similarity of immune mechanisms of these rat models to human disease, bacterial cell wall-induced inflammation provides unique opportunities to study pathogenic mechanisms of granuloma formation in response to ubiquitous microbial agents and to test novel therapeutic agents.