The CD4 co-receptor interacts with nonpolymorphic regions of major histocompatibility complex class II molecules on antigen-presenting cells. This interaction results in the mobilization of a number of signaling mediators shared by the T cell receptor (TcR) signaling pathway and thus amplifies TcR-generated signals. We have investigated the outcome of CD4 engagement on the activation of both cellular transcription factors and the HIV-1 long terminal repeat (LTR). We show that CD4 triggering activates different pathways of HIV LTR activation which can be identified by their sensitivity to the immunosuppressant cyclosporin A. The response of the inducible cellular transcription factors involved in HIVLTR activation shows that both nuclear factor (NF)-kappa B and NF-AT mediate a cyclosporin A-sensitive response to CD4, while AP-1 is at least in part responsible for the cyclosporin A-insensitive response. Both pathways can, however, be blocked by a kinase-defective dominant negative p56lck mutant, supporting an essential role for p56lck kinase activity in CD4-dependent signal transduction. A functional analysis of different CD4 epitopes using either anti-CD4 mAb or HIV-1 gp120 reveals a common epitope-specific activation of both the LTR and of the transcription factors NF-kappa B and NF-AT.