1. The effects of acetylcholine (ACh) on the L-type Ca2+ current (ICa) stimulated by isoprenaline (Iso) or forskolin (Fsk) were examined in frog ventricular myocytes using the whole-cell patch-clamp technique and a double capillary for extracellular microperfusion. 2. The exposure of one half of the cell to 1 microM Iso produced a half-maximal increase in ICa since a subsequent application of Iso to the other half induced an additional effect of nearly the same amplitude. Similarly, addition of 1 microM ACh to only one half of a cell exposed to Iso on both halves reduced the effect of Iso by only approximately 50%. 3. When 10 microM Iso or 30 microM Fsk were applied to a Ca(2+)-free solution on one half of the cell, ICa was increased in the remote part of the cell where adenylyl cyclase activity was not stimulated. However, addition of ACh (3-10 microM) to the remote part had no effect on ICa, while addition of ACh to the part of the cell exposed to Iso or Fsk strongly antagonized the stimulatory effects of these drugs. 4. Our data demonstrate that ACh regulates ICa by acting at a site proximal to adenylyl cyclase in frog ventricular cells. We conclude that the muscarinic regulation of ICa does not involve any additional cAMP-independent mechanisms occurring downstream from cAMP generation.