We previously reported that cyclosporin A (CSA) promotes the generation of T helper memory cells during antigenic priming of murine spleen cells in vitro. More recently, we have demonstrated that interleukin-2 (IL2) has a downmodulating effect on T helper memory cell generation. The present data address the role of the other T cell growth factor, IL4, upon induction of these cells. The data presented here show that IL4 can interfere with this process: addition of rIL4 to immunosuppressed priming cultures leads to a considerable decrease in the helper activity of the recovered cells. However, in standard cultures, in which IL2 is normally produced, no effect of IL4 on T helper memory cell generation was found. Addition of IL4 has important consequences for cytokines produced upon antigenic restimulation. In standard cultures, IL4 primes for cells expressing high levels of IL2 and IL4 mRNA. Strikingly, in immunosuppressed priming cultures, IL4 counterbalances the CSA-induced blockade of the IFN gamma gene. Taken together, our results suggest that the unique role of IL4 is to drive T helper memory precursors into an IL4 production differentiation pathway. However, IL4 has a downmodulating effect on memory T helper cell induction when IL2 is not produced. These results confirm that synergy between IL2 and IL4 is mandatory for the directive role of IL4 upon IL4-producing cells. Furthermore, the finding that IL4 promotes the induction of IFN gamma in a CSA-resistant pathway represents a new tool for analysis of regulation of the IFN gamma gene.