Many individuals with familial Alzheimer disease (FAD) have mutations in a gene termed S182 or presenilin I (PS-I). Currently, the PS-I gene product has not been identified and its function remains unknown. Here we report that affinity purified antibodies against the predicted amino acid sequence of the PS-I gene product detected in homogenates of human, mouse, and rat brains a single antigen of approximately 48 kDa. This antigen was also present in immortalized human and mouse neuronal cell cultures. Brain tissue fractionation showed that all PS-I antigen was found in the membrane fraction. In stained tissue sections of mouse central nervous system (CNS), PS-I antigen was found only in neurons throughout brain and spinal cord and was located within cell bodies, axons, and dendrites. Remarkably the relative partition among these three compartments varied dramatically. A striking feature of PS-I expression was its intense concentration in some (but not all) dendrites, at levels substantially above those in the parent perikarya. In most of the cerebrum, PS-I staining in axons was very weak or undetectable. By contrast, many axons in portions of the brainstem and in the spinal cord showed marked PS-I immunoreactivity. Similarly, staining of sections from human temporal cortex showed that PS-I was present mainly in neuronal cell bodies and dendrites. These data show that in the CNS, PS-I is expressed mainly in neurons and suggests that this protein may perform a neuron specific function. The pattern of PS-I expression in the CNS would suggest that the premature neurodegeneration associated with PS-I mutations involves a primary neuronal process rather than a secondary effect of PS-I produced in non-neuronal cells.