The results of studies with cultured endothelial cells have shown that most von Willebrand factor (vWF) synthesized is directly secreted (constitutive pathway) and consists of both mature vWF, its precursor molecule pro-vWF, and the cleaved vWF prosequence. Only fully processed, functionally mature vWF is stored within the cell, together with the propeptide, and leaves the cell only on stimulation (regulated secretion). Both in resting and stimulated cultured endothelial cells, the stoichiometry of the released propeptide to the released mature vWF is essentially equimolar. In the present study, we have measured the molar ratio of propeptide to mature vWF in vivo, both under resting conditions and conditions that reflect activation of the endothelium. To this end, we devised a method that allows the measurement of the propeptide (vW antigen II) on a quantitative, is, molar basis, using purified recombinant propeptide as a standard. Our results show that the molar concentration of the propeptide in normal plasma is about one tenth of the concentration of mature vWF (expressed as half-dimer concentration). This ratio is approximately 1:1 in the medium of cultured endothelial cells. On administration in healthy subjects of either 1-deamino-8-D-arginine vasopressin or endotoxin, both agents being known to elicit an intravascular increase of vWF, the molar ratio of propeptide to mature vWF increased fourfold to fivefold. The propeptide concentration returned to baseline values after about 6 to 7 hours of injection of each stimulus, whereas the increase of mature vWF was much more sustained. Because the respective half-lives of mature vWF and its propeptide clearly differ, measurement of the concentration of these proteins could provide a means to assess the extent of activation of the endothelium under physiological and pathophysiological conditions.