The nucleotide excision repair pathway removes a broad spectrum of DNA lesions, including UV-induced damage. To ascertain whether the repair of the latter has a causative role in the enhancement of non-homologous recombination, Chinese hamster CHO cell lines proficient and deficient in the ability to repair UV-induced damage were transfected with a plasmid containing the bacterial neoR gene. Following UV-treatment an enhancement of non-homologous recombination above the spontaneous level was observed in repair-proficient cells, whereas no increase was observed in repair-deficient cell lines. Hence, the latter were transfected with the corresponding excision repair cross complementing human genes and the resulting repair-proficient transfectants were tested for UV-induced non-homologous recombination. In both untreated and UV-treated transfectants, the frequencies of the event were not significantly different. Cumulatively, the results suggest that non-homologous recombination induced by UV-irradiation is not restored by the correction of the excision repair defect.