A series of amidoethylamino-anthraquinone derivatives bearing either one or two salen (bis(salicylidene)ethylenediamine) moieties complexed with CuII or NiII have been synthesized, and their DNA-binding and cleaving properties examined. The effects of the mono- and di-substituted anthracenedione-salen conjugates on DNA cleavage mediated by topoisomerases I and II have also been determined, as well as their cytotoxicity toward human KB cells. The anthraquinone-salen. NiII conjugates bind to GC-rich sequences in DNA, but do not cleave the macromolecule. By contrast, the anthraquinone-salen. CuII hybrids do not recognize particular nucleotide sequences but efficiently induce single-strand breaks in DNA after activation. The 5,8-dihydroxy-anthraquinone conjugates are more cytotoxic and more potent toward topoisomerase II than the non-hydroxylated analogues, but they are less cytotoxic than the salen-free anthraquinones. The attachment of a salen. CuII complex to the anthraquinone chromophore can confer DNA cleaving properties in vitro, but this is at the expense of cytotoxic activity. Anthraquinone-salen. CuII complexes may find useful employ as footprinting probes for investigating ligand-DNA interactions.