Drosophila homeotic genes and vertebrate Hox genes are involved in the anteroposterior organization of the developing embryo. In Drosophila, the Polycomb- and trithorax-group genes are required to maintain the homeotic genes throughout development in the repressed or activated state, respectively. The murine Bmi-1 proto-oncogene was shown to exhibit homology to the Polycomb-group gene Posteior sex combs. Mice lacking the Bmi-1 gene revealed posterior transformations along the axial skeleton, whereas transgenic mice overexpressing Bmi-1 display anterior transformations. We have analysed the expression patterns of several Hox genes by RNA in situ hybridization on serial sections of 11.5- and 12.5-day Bmi-1 null mutant embryos. Furthermore, we have analysed the expression of a Hoxc-8/LacZ fusion gene in younger embryos. Our analyses show that Bmi-1 is involved in the repression of a subset of Hox genes from different clusters from at least day 9.5 onwards. We discuss the possibility that members of the murine Polycomb-group can form multimeric protein complexes of different compositions with varying affinity or specificity for different subsets of Hox genes.