Potentially important diagnostic information about atherosclerosis can be obtained by using magnetic resonance imaging and spectroscopy techniques. Because critical vessels such as the aorta, coronary arteries, and renal arteries are not near the surface of the body, surface coils are not adequate to increase the data quality to desired levels. A few catheter MR receiver coil designs have been proposed for imaging the walls of large blood vessels such as the aorta. These coils have limited longitudinal coverage and they are too thick to be placed into small vessels. A flexible, long and narrow receiver coil that can be placed on the tip of a catheter and will enable multi-slice high resolution imaging of small vessels has been developed. The authors describe the theory of the coil design technique, derive formulae for the signal-to-noise ratio characteristics of the coil, and show examples of high resolution cross-sectional images from isolated human aortas acquired by using this catheter coil. In addition, high resolution in vivo rabbit aorta images were obtained as well as a set of spatially resolved chemical shift spectra from a dog circumflex coronary artery.