Background: Overexpression of human lecithin-cholesterol acyltransferase (LCAT) in transgenic mice results in an increase of the antiatherogenic HDLs.
Methods and results: To investigate the potential use of LCAT for gene therapy, a recombinant adenovirus was constructed in which the human LCAT cDNA was expressed under the control of the human cytomegalovirus immediate/early promoter followed by a chimeric intron (AdCMV human LCAT). Human apolipoprotein (apo) A-I transgenic mice infected with AdCMV human LCAT by intravenous injection accumulated reactive LCAT in the plasma. LCAT activity was increased 201-fold in the plasma of mice infected with 1 x 10(6) pfu AdCMV human LCAT, from 45 +/- 2 to 9068 +/- 812 nmol.mL-1.h-1, in comparison with basal LCAT activity measured in control mice, 5 days after injection. Plasma HDL cholesterol levels rose from 117 +/- 12 to 797 +/- 48 mg/dL, and plasma human apo A-I concentrations increased from 247 +/- 14 to 616 +/- 17 mg/dL, in AdCMV human LCAT infected mice compared with control mice. HDL particles were larger and had a different electrophoretic mobility. Studies of cholesterol efflux by incubation of serum with cholesterol-loaded Fu5AH cells showed that serum from AdCMV human LCAT-infected mice promoted a significantly higher efflux than did that of the controls.
Conclusions: These data establish the potential of this approach for treatment of subjects with LCAT gene defects as well as patients with low plasma levels of apo A-I and HDL cholesterol.