We report here a study of photoaffinity labeling of the V1a-vasopressin receptor with high-affinity, V1-specific radioiodinated antagonist ligands: one containing an azidophenylalanine residue ([beta,beta-dimethyl-beta-mercaptopropionyl(1), p-azido-Phe2,Val4,Lys8,D-Tyr9] vasopressin), two others containing nitrophenylalanine, and one, highly similar but without a photosensitive function, as control. All analogues competed in the dark for the same binding site with vasopressin. Long-wavelength UV irradiation of rat liver membranes incubated in presence of the radio-iodinated azido photolabel produced a specifically labeled protein band at 53 kDa in SDS-PAGE. Identical experiments with the nitrophenylalanyl peptides produced only non-specific labeling and control experiments with the non-photosensitive analogue produced no labeling at all. Chemical crosslinking of 3H-VP to the same membrane preparation produced a result identical to that of the azido photolabel, confirming the receptor nature of the labeled protein. Deglycosylation of the labeled receptor with endoglycosidase F reduced the observed molecular weight of 53 kDa to 43 kDa. The molecular parameters reported herein of the presumed hepatic vasopressin receptor confirm the values deduced from the molecular cloning of the rat V1a receptor.