Plectin is a widely expressed cytomatrix component involved in the attachment of the cytoskeleton to the plasma membrane. We have recently reported that the skin and muscles of three patients affected by epidermolysis bullosa simplex with muscular dystrophy (MD-EBS), a genetic disorder characterized by skin blistering associated with muscle involvement, are not reactive with antibodies specific to plectin. We demonstrated that in the skin, lack of plectin leads to failure of keratin filaments to connect to the plasma membrane via the hemidesmosomes, whereas in the muscle the deficient expression of the molecule correlates with an aberrant localization of desmin in the muscle fibers. In this study we demonstrate that in a MD-EBS kindred with two affected members, the disease results from a homozygous nonsense mutation in the plectin (PLEC1) gene leading to a premature stop codon (CGA to TGA) and decay of the aberrant plectin messenger RNA. The segregation of the mutated allele implicates the mutation in the pathology of the disorder. These results confirm the critical role of plectin in providing cell resistance to mechanical stresses both in the skin and the muscle.