Restricted expression of a novel murine atonal-related bHLH protein in undifferentiated neural precursors

Dev Biol. 1996 Nov 25;180(1):227-41. doi: 10.1006/dbio.1996.0297.

Abstract

Tissue-specific bHLH proteins play important roles in the specification and differentiation of neural cell lineages in invertebrate and vertebrate organisms. Two groups of bHLH proteins, atonal and achaete-scute, have proneural activities in Drosophila, and the mouse achaete-scute homolog MASH1 is required for the differentiation of several neural lineages. In a screen for proteins interacting with MASH1, we have isolated a novel bHLH protein related to atonal, named MATH4A, which is broadly expressed in neural precursor cells in the mouse embryonic CNS and PNS. Interaction assays in yeast and in vitro demonstrate that MATH4A interacts efficiently with both MASH1 and the ubiquitous bHLH protein E12. MATH4A-E12 heterodimers, but not MATH4A-MASH1, bind to a consensus E-box sequence. Math4A expression is restricted to undifferentiated neural precursors and is complementary to that of Mash1 in most regions of the nervous system. In particular, Math4A is transcribed at high levels in the cerebral cortex, dorsal thalamus, and epibranchial placodes, which present little or no Mash1 expression. However, expression of the two genes shows limited overlap in certain CNS regions (retina, preoptic area of the hypothalamus, midbrain, hindbrain). Its structure and expression pattern suggest that MATH4A may regulate an early step of neural development, either as a partner of ubiquitous bHLH proteins or associated with other neural-specific bHLH proteins.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Basic Helix-Loop-Helix Transcription Factors
  • Cloning, Molecular
  • DNA-Binding Proteins / biosynthesis*
  • DNA-Binding Proteins / chemistry
  • DNA-Binding Proteins / metabolism*
  • Drosophila / embryology
  • Drosophila Proteins
  • Embryo, Mammalian
  • Embryo, Nonmammalian
  • Helix-Loop-Helix Motifs*
  • Mice
  • Molecular Sequence Data
  • Nerve Tissue Proteins / biosynthesis*
  • Nerve Tissue Proteins / chemistry
  • Nerve Tissue Proteins / metabolism
  • Nervous System / embryology*
  • Nervous System Physiological Phenomena
  • Neurons / physiology*
  • Protein Biosynthesis
  • Recombinant Proteins / biosynthesis
  • Saccharomyces cerevisiae
  • Sequence Homology, Amino Acid
  • Transcription Factors / metabolism*
  • Transcription, Genetic

Substances

  • ATOH1 protein, human
  • Ascl1 protein, mouse
  • Atoh1 protein, mouse
  • Basic Helix-Loop-Helix Transcription Factors
  • DNA-Binding Proteins
  • Drosophila Proteins
  • NEUROG2 protein, human
  • Nerve Tissue Proteins
  • Neurog2 protein, mouse
  • Recombinant Proteins
  • Transcription Factors
  • ato protein, Drosophila

Associated data

  • GENBANK/Y07621