Accumulating evidence suggests that triglyceride-rich lipoproteins contribute to coronary artery disease. Using data from the Monitored Atherosclerosis Regression Study, an angiographic trial of middle-aged men and women randomized to lovastatin or placebo, we investigated relationships between lipoprotein subclasses and progression of coronary artery atherosclerosis. Coronary artery lesion progression was determined by quantitative coronary angiography in low-grade ( < 50% diameter stenosis), high-grade ( > or = 50% diameter stenosis), and all coronary artery lesions in 220 baseline/2-year angiogram pairs. Analytical ultracentrifugation was used to measure lipoprotein masses that were statistically evaluated for treatment group differences and relationships to progression of coronary artery atherosclerosis. All low density lipoprotein (LDL), intermediate density lipoprotein (IDL), and very low density lipoprotein (VLDL) masses were significantly lowered and all high density lipoprotein (HDL) masses were significantly raised with lovastatin therapy. The mass of smallest LDL (Svedberg flotation rate [Sf] 0 to 3), IDL (Sf 12 to 20), all VLDL subclasses (Sf 20 to 60, Sf 60 to 100, and Sf 100 to 400), and peak LDL flotation rate were significantly related to the progression of coronary artery lesions, specifically low-grade lesions. Greater baseline levels of HDL3, were related to a lower likelihood of coronary artery lesion progression. In multivariate analyses, small VLDL (Sf 20 to 60) and HDL3 mass were the most important correlates of coronary artery lesion progression. These results provide further evidence for the importance of triglyceride-rich lipoproteins in the progression of coronary artery disease. In addition, these results present new evidence for the possible protective role of HDL3 in the progression of coronary artery lesions. More specific information on coronary artery lesion progression may be obtained through the study of specific apolipoprotein B-containing lipoproteins.