A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Listeria innocua

J Biol Chem. 1997 Feb 7;272(6):3259-65. doi: 10.1074/jbc.272.6.3259.

Abstract

A multimeric protein that behaves functionally as an authentic ferritin has been isolated from the Gram-positive bacterium Listeria innocua. The purified protein has a molecular mass of about 240,000 Da and is composed of a single type of subunit (18,000 Da). L. innocua ferritin is able to oxidize and sequester about 500 iron atoms inside the protein cage. The primary structure reveals a high similarity to the DNA-binding proteins designated Dps. Among the proven ferritins, the most similar sequences are those of mammalian L chains that appear to share with L. innocua ferritin the negatively charged amino acids corresponding to the iron nucleation site. In L. innocua ferritin, an additional aspartyl residue may provide a strong complexing capacity that renders the iron oxidation and incorporation processes extremely efficient. This study provides the first experimental evidence for the existence of a non-heme bacterial ferritin that is related to Dps proteins, a finding that lends support to the recent suggestion of a common evolutionary origin of these two protein families.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Circular Dichroism
  • DNA-Binding Proteins / chemistry*
  • Ferritins / chemistry*
  • Listeria / chemistry*
  • Molecular Sequence Data
  • Molecular Weight
  • Sequence Alignment

Substances

  • Bacterial Proteins
  • DNA-Binding Proteins
  • DPS protein, Bacteria
  • Ferritins

Associated data

  • SWISSPROT/P80725