To investigate the role played by the intergenic dinucleotide sequence of the conserved vesicular stomatitis virus (VSV) gene junction in modulation of polymerase activity, we analyzed the RNA synthesis activities of bicistrionic genomic analogs that contained either the authentic N/P gene junction or gene junctions that had been altered to contain either the 16 possible dinucleotide combinations, single nucleotide intergenic sequences, or no intergenic sequence at all. Quantitative measurements of the amounts of upstream, downstream, and readthrough mRNAs that were transcribed by these mutant templates showed that the behavior of the viral polymerase was profoundly affected by the nucleotide sequence that it encountered as it traversed the gene junction, although the polymerase was able to accommodate a remarkable degree of sequence variation without altogether losing the ability to terminate and reinitiate transcription. Alteration or removal of the intergenic sequence such that the U tract responsible for synthesis of the upstream mRNA poly(A) tail was effectively positioned adjacent to the consensus downstream gene start signal resulted in almost complete abrogation of downstream mRNA synthesis, thus defining the intergenic sequence as an essential sequence element of the gene junction. Many genome analogs with altered intergenic sequences directed abundant synthesis of a readthrough transcript without correspondingly high levels of downstream mRNA, an observation inconsistent with the shunting model of VSV transcription, which suggests that polymerase molecules are prepositioned at gene junctions, awaiting a push from upstream. Instead, the findings of this study support a model of sequential transcription in which initiation of downstream mRNA can occur only following termination of the preceding transcript.