We investigated the in vitro degradation of a novel degradable polymeric composite material being developed to function as a temporary replacement for trabecular bone. This material is based on a mixture of poly(propylene fumarate) cross-linked by N-vinyl-pyrrolidone and includes sodium chloride and beta-tricalcium phosphate. Using an in vitro test in simulated body fluids, the compressive strengths and compressive moduli of two composite materials increased with degradation time and remained above the minimum values acceptable for trabecular bone substitutes. A compressive strength of 21.3 (+/- 0.4) MPa and a compressive modulus of 696 (+/- 53) MPa were measured after twelve weeks for a composite material with initial strength of 18.0 (+/- 4.6) MPa and initial modulus of 113 (+/- 40) MPa. This unexpected phenomenon may prove to be useful for orthopaedic applications.