Testing potential modifiers of the response of tumors to radiation therapy requires large, expensive, and time-consuming clinical trials. It would, therefore, be of value to have a rapid surrogate end point of tumor response that could be used to evaluate such modifiers. We here propose that radiation-induced stable chromosome translocations measured by fluorescence in situ hybridization (FISH) could fulfill this purpose. The assay requires that the ratio of nonlethal stable translocations to lethal dicentric aberrations be unity and not change with radiation dose and that radiation-induced stable translocations remain in the tumor cell population essentially indefinitely after irradiation. We have tested these assumptions with four human tumor cell lines in vitro at doses of 1-5 Gy and found them to be valid. We also modified the response to fractionated irradiation of a human tumor xenograft in three different ways and quantitated the tumor response using clonogenic cell survival and using the FISH stable translocation assay. Both assays gave similar values for the extent of radiation modification. These data suggest that this assay could allow clinical evaluation of potential radiation sensitizers with fewer patients and in shorter times than is the case with conventional clinical trials.