An investigation of the physical characteristics of 66Ga as an isotope for PET imaging and quantification

Med Phys. 1997 Feb;24(2):317-26. doi: 10.1118/1.597924.

Abstract

Isotopes commonly used for PET imaging and quantification have a straightforward decay scheme involving "pure" positron (beta +) emission, i.e., 95%-100% beta + abundance, with no additional gamma rays. 66Ga (Emax = 4.2 MeV, T1/2 = 9.5 h) is a member of a category of isotopes with a lower abundance of beta +'s (57%) and a more complicated spectrum involving combinations of gamma rays that are emitted in cascade. These additional gamma rays tend to cause a higher singles rate, resulting in more random coincidence events. The most abundant positron (51.5%) in the spectrum has one of the highest energies considered for PET imaging. For the purpose of monoclonal antibody dosimetry using 66Ga, it is important to verify the quantification in phantoms prior to initiating human studies. A series of quantitative phantom measurements were performed on the PC4600, a head-optimized BGO based scanner with multiple detector rings. Count rate linearity was verified over concentrations ranging from 4.0 kBq/cc to 37 kBq/cc (0.11-1.0 microCi/cc); resolution averaged 16 mm full width half-maximum in the x and y directions in both the direct and cross planes. Axial resolution was 14 mm. The range of the energetic positrons (up to 4.153 MeV, range 7.6 mm in tissue) was verified as a primary source of resolution degradation. Within the limits outlined above, 66Ga is a suitable isotope for use as 66Ga citrate or with monoclonal antibodies in the detection and staging of tumors and other lesions. In addition, the energetic positrons have possible therapeutic applications when used as a monoclonal antibody label.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Beta Particles
  • Biophysical Phenomena
  • Biophysics
  • Gallium Radioisotopes / therapeutic use*
  • Gamma Rays
  • Phantoms, Imaging
  • Radiation Dosage
  • Technology, Radiologic
  • Temperature
  • Tomography, Emission-Computed / instrumentation*

Substances

  • Gallium Radioisotopes